Neural headline generation models have recently shown great results since neural network methods have been applied to text summarization.In this paper, we focus on Vacuum Composite Filter news headline generation.We propose a news headline generation model based on a generative pre-training model.In our model, we propose a rich features input module.The headline generation model we propose only contains a decoder incorporating the pointer mechanism and the n-gram language features, while other generation models use the encoder-decoder architecture.
Experiments on news datasets show that our model achieves comparable results in Boot Tassels the field of news headline generation.